Aquaponics /ˈækwəˈpɒnɨks/, is a food production system that combines conventional aquaculture (raising aquatic animals such as snails, fish, crayfish or prawns in tanks) with hydroponics (cultivating plants in water) in a symbiotic environment. In normal aquaculture, excretions from the animals being raised can accumulate in the water, increasing toxicity. In an aquaponic system, water from an aquaculture system is fed to a hydroponic system where the by-products are broken down by nitrification bacteria into nitrates and nitrites, which are utilized by the plants as nutrients. The water is then recirculated back to the aquaculture system.
As existing hydroponic and aquaculture farming techniques form the basis for all aquaponics systems, the size, complexity, and types of foods grown in an aquaponics system can vary as much as any system found in either distinct farming discipline.
Aquaponics has ancient roots, although there is some debate on its first occurrence:
- Aztec cultivated agricultural islands known as chinampas in a system considered by some to be the first form of aquaponics for agricultural use where plants were raised on stationary (and sometime movable) islands in lake shallows and waste materials dredged from the Chinampa canals and surrounding cities were used to manually irrigate the plants.
- South China, Thailand, and Indonesia who cultivated and farmed rice in paddy fields in combination with fish are cited as examples of early aquaponics systems] These polycultural farming systems existed in many Far Eastern countries and raised fish such as the oriental loach (泥鳅, ドジョウ) swamp eel (黄鳝, 田鰻), Common (鯉魚, コイ) and crucian carp (鯽魚) as well as pond snails (田螺) in the paddies
Floating aquaponics systems on polycultural fish ponds were installed in China in more recent years on a large scale growing rice, wheat and canna lily and other crops,[10] with some installations exceeding 2.5 acres (10,000 m2).[11]
The development of modern aquaponics is often attributed to the various works of the New Alchemy Institute and the works of Dr. Mark McMurtry et al. at the North Carolina State University Inspired by the successes of the New Alchemy Institute, and the reciprocating aquaponics techniques developed by Dr. Mark McMurtry et al., other institutes soon followed suit. Starting in 1997, Dr. James Rakocy and his colleagues at the University of the Virgin Islands researched and developed the use of deep water culture hydroponic grow beds in a large-scale aquaponics system.
The first aquaponics research in Canada was a small system added onto existing aquaculture research at a research station in Lethbridge, Alberta. Canada saw a rise in aquaponics setups throughout the ’90s, predominantly as commercial installations raising high-value crops such as trout and lettuce. A setup based on the deep water system developed at the University of Virgin Islands was built in a greenhouse at Brooks, Alberta where Dr. Nick Savidov and colleagues researched aquaponics from a background of plant science. The team made findings on rapid root growth in aquaponics systems and on closing the solid-waste loop, and found that owing to certain advantages in the system over traditional aquaculture, the system can run well at a low pH level, which is favoured by plants but not fish.
The Caribbean island of Barbados created an initiative to start aquaponics systems at home, with revenue generated by selling produce to tourists in an effort to reduce growing dependence on imported food.
In Bangladesh, the world's most densely populated country, most farmers use agrochemicals to enhance food production and storage life, though the country lacks oversight on safe levels of chemicals in foods for human consumption] To combat this issue a team led by Professor Dr. M.A. Salam at the Department of Aquaculture of Bangladesh Agricultural University, Mymensingh has created plans for a low-cost aquaponics system to provide chemical-free produce and fish for people living in adverse climatic conditions such as the salinity-prone southern area and the flood-prone haor area in the eastern region.Dr. Salam's work innovates a form of subsistence farming for micro-production goals at the community and personal levels whereas design work by Chowdhury and Graff was aimed exclusively at the commercial level, the latter of the two approaches take advantage of economies of scale.
With more than a third of Palestinian agricultural lands in the Gaza Strip turned into a buffer zone by Israel, an aquaponic gardening system is developed appropriate for use on rooftops in Gaza City.
There has been a shift towards community integration of aquaponics, such as the nonprofit foundation Growing Power that offers Milwaukee youth job opportunities and training while growing food for their community. The model has spawned several satellite projects in other cities, such as New Orleans where the Vietnamese fisherman community has suffered from the Deepwater Horizon oil spill, and in the South Bronx in New York City.
Whispering Roots is a non-profit organization in Omaha, Nebraska that provides fresh, locally grown, healthy food for socially and economically disadvantaged communities by using aquaponics, hydroponics and urban farming.
In addition, aquaponic gardeners from all around the world have gathered in online community sites and forums to share their experiences and promote the development of this form of gardening as well as creating extensive resources on how to build home systems.
Recently, aquaponics has been moving towards indoor production systems. In cities like Chicago, entrepreneurs are utilizing vertical designs to grow food year round. These systems can be used to grow food year round with minimal to no waste.