Law of Sines and Cosines. 001

Posted on at



1. Side a = 3, side b = 5, and side c = 7. Find all missing angles. In this case, 3 sides are known so you should use the law of cosines.

 

c2 = a2 + b2 - 2ab Cos C

49 = 9 + 25 - 2(3)(5) Cos C

49 = 34 - 30 Cos C

15 = -30 Cos C

-1/2 = Cos C

Cos-1 (-1/2) = C

120 = C

ÐC = 120°

 

b2 = a2 + c2 – 2ac CosB

25 = 9 + 49 – 2(21) CosB

25 = 58 – (42) CosB

-33 = (-42) CosB

.7857 = CosB

Cos-1 (.7857) = B

38 = B

ÐB = 38°

 

A2 = b2 + c2 – 2bc CosA

9 = 25 + 49 – 2(5)(7) CosA

9 = 74 – 2(35) CosA

-65 = (-70) CosA

.92857 = CosA

Cos-1 (.92857) = A

22 = A

ÐA = 22°

 

 

 

2. Side a = 4, side b = 6, and angle A = 40°. Find angle B. In this case, 2 sides and an angle opposite one of the sides are known, so you can use the law of sines.


a    =    b

Sin A    Sin B

4     =     6

Sin 40°     Sin B

4 (Sin B) = 6 (Sin 40°)

Sin B = 6 (Sin 40°)

                                                                   4       

Sin B = 0.964

ÐB = 75°

 

 


3. If side a = 8, side b = 11, and side c = 14, what are the missing angles? You again have three sides, so the law of cosines should be used.

 

b2 = a2 + c2 - 2ac CosB

121 = 64 + 196 – 2(112) CosB

121 = 260 – (224) CosB

-139 = -224 CosB

.6205 = CosB

Cos-1 (.6205) = B

52° = B

ÐB = 52°

 

 

 

a2 = b2 + c2 – 2bc CosA

64 = 121 + 196 – 2(154) CosA

64 = 317 – (308) CosA

-253 = (-308) CosA

.8214 = CosA

Cos-1 (.8214) = A

34.77 = A

ÐA = 35°

 

Now angle C can be found from subtracting 35° and 52° from 180°, this equals

 

180° - 35° – 52° = 93°

 

(However you can check that this is right by again using the law of cosines).

 

c2 = a2 + b2 – 2ab CosC

196 = 64 + 121 – 2(88) CosC

196 = 185 – (176) CosC

11 = (- 176) CosC

-.0625 = CosC

Cos-1 (-.0625) = C

93 = C

ÐC = 93°



160