Learning Control System Using Matlab (Part_04)

Posted on at


First of all simplify the diagram

  • Move the G3 to the left past of summing junction
  • We get G2 and G3 in series and H1 and G3 in series
  • Solve the above cascaded form
  • Let A = G2.G3 &B = H1.G3
  • Now H2 forms feedback for Aand B forms feedback for G4
  • Solving above
  • C = A+H2 &D = G4/(1+B.G4)
  • Now G1 , C & D are in series so
  • E = G1.C.D
  • Now , H3 forms feedback for E so ,
  • SYS = E/(1+E.H3)

CODING

n1 = [0 1];

d1 = [1 10];

G1 = tf(n1,d1);

n2 = [0 1];

d2 = [1 1];

G2 = tf(n2,d2);

n3 = [1 0 1];

d3 = [1 4 4];

G3 = tf(n3,d3);

n4 = [1 1];

d4 = [1 6];

G4 = tf(n4,d4);

n5 = [1 1];

d5 = [1 6];

H1 = tf(n5,d5);

H2 = 2;

H3 = 1;

A = series(G2,G3);

B = series(H1,G3);

C = feedback(A,H2);

D = feedback(G4,B,1); %% +ve feedback

E = series(G1,C)

F = series(E,D);

SYS = feedback(F,H3)

pzmap(SYS)

gridon

OUTPUT

SYS =

s^6 + 11 s^5 + 39 s^4 + 63 s^3 + 62 s^2 + 52 s + 24
----------------------------------------------------------------
14 s^7 + 325 s^6 + 2755 s^5 + 11324 s^4 + 25550 s^3 + 32716 s^2  + 23750 s + 8604

-------------------------------------------------------------------------------------------------------------------------------

  • First solve cascaded portion
  • Then solve the feed back portion
  • Ant the end use the step function to find the step response of system

CODING

n1 = [0 1];

d1 = [1 1];

controller = tf(n1,d1);

 

n2 = [1 2];

d2 = [1 3];

plant = tf(n2,d2);

 

S = series(controller,plant);

 

SYS = feedback(S,1)

 

step(SYS)

 

gridon

 

OUTPUT

 

SYS =

     s + 2

-------------

s^2 + 5 s + 5

Graph shows that output is

Output = 0.4 = 2/5

-------------------------------------------------------------------------------------------------------------------------------

  • First solve feedback portion
  • Then find its pole _zero map

 

CODING

 

n1 = [1 1];

d1 = [1 2];

G =tf(n1,d1);

 

n2 = [0 1];

d2 = [1 1];

H = tf(n2,d2);

 

SYS = feedback(G,H)

 

Poles_of_SYS = pole(SYS)

Zeros_of_SYS = zero(SYS)

 

pzmap(SYS)

 

gridon

 

 

OUTPUT

 

 

SYS =

s^2 + 2 s + 1

-------------

s^2 + 4 s + 3

 

 

Poles_of_SYS =

   -3

   -1

Zeros_of_SYS =

   -1

   -1



About the author

Ihtasham-Zahid

I am student of Electronics Engineering in International Islamic University Islamabad.

Subscribe 0
160