Ethernet
A local-area network (LAN) architecture developed by Xerox Corporation in cooperation with DEC and Intel in 1976. Ethernet uses a bus or star topology and supports data transfer rates of 10 Mbps. The Ethernet specification served as the basis for the IEEE 802.3 standard, which specifies the physicaland lower software layers. Ethernet uses the CSMA/CD access method to handle simultaneous demands. It is one of the most widely implemented LAN standards.
A newer version of Ethernet, called 100Base-T (or Fast Ethernet), supports data transfer rates of 100 Mbps. And the newest version, Gigabit Ethernetsupports data rates of 1 gigabit (1,000 megabits) per second.
TOKEN RING
A Token Ring network is a local area network (LAN) in which all computers are connected in a ring or star topology and a bit- or token-passing scheme is used in order to prevent the collision of data between two computers that want to send messages at the same time. The Token Ring protocol is the second most widely-used protocol on local area networks after Ethernet. The IBM Token Ring protocol led to a standard version, specified as IEEE 802.5. Both protocols are used and are very similar. The IEEE 802.5 Token Ring technology provides for data transfer rates of either 4 or 16 megabits per second. Very briefly, here is how it works:
1. Empty information frames are continuously circulated on the ring.
2. When a computer has a message to send, it inserts a token in an empty frame (this may consist of simply changing a 0 to a 1 in the token bit part of the frame) and inserts a message and a destination identifier in the frame.
3. The frame is then examined by each successive workstation. If the workstation sees that it is the destination for the message, it copies the message from the frame and changes the token back to 0.
4. When the frame gets back to the originator, it sees that the token has been changed to 0 and that the message has been copied and received. It removes the message from the frame.
5. The frame continues to circulate as an "empty" frame, ready to be taken by a workstation when it has a message to send.
FDDI (Fiber Distributed Data Interface)
FDDI (Fiber Distributed Data Interface) is a set of ANSI and ISO standards for data transmission on fiber optic lines in a local area network (LAN) that can extend in range up to 200 km (124 miles). The FDDI protocol is based on the token ring protocol. In addition to being large geographically, an FDDI local area network can support thousands of users. FDDI is frequently used on the backbone for a wide area network (WAN).An FDDI network contains two token rings, one for possible backup in case the primary ring fails. The primary ring offers up to 100 Mbps capacity. If the secondary ring is not needed for backup, it can also carry data, extending capacity to 200 Mbps. The single ring can extend the maximum distance; a dual ring can extend 100 km (62 miles).FDDI is a product of American National Standards Committee X3-T9 and conforms to the Open Systems Interconnection (OSI) model of functional layering. It can be used to interconnect LANs using other protocols. FDDI-II is a version of FDDI that adds the capability to add circuit-switched service to the network so that voice signals can also be handled. Work is underway to connct FDDI networks to the developing Synchronous Optical Network (SONET).
ATM (asynchronous transfer mode)
ATM (asynchronous transfer mode) is a dedicated-connection switching technology that organizes digital data into 53-byte cell units and transmits them over a physical medium using digital signal technology. Individually, a cell is processed asynchronously relative to other related cells and is queued before being multiplexed over the transmission path.Because ATM is designed to be easily implemented by hardware (rather than software), faster processing and switch speeds are possible. The prespecified bit rates are either 155.520 Mbps or 622.080 Mbps. Speeds on ATM networks can reach 10 Gbps. Along with Synchronous Optical Network (SONET) and several other technologies, ATM is a key component of broadband ISDN (BISDN).ATM also stands for automated teller machine, a machine that bank customers use to make transactions without a human teller.